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The motion of a rotor of which both the bearings and the shaft cross-section are
asymmetric is generally governed by ordinary di!erential equations with periodic
coe$cients. In this paper, modi"cations are made to incorporate the e!ect of shaft
asymmetry into an existing "nite element procedure developed for rotors with symmetric
shaft. The model for the elastic asymmetric shaft takes into account rotary inertia and
gyroscopic inertia. In addition, this paper describes an existing method of investigating the
stability of a general system of di!erential equations with periodic coe$cients, and evaluates
its e$ciency when applied to asymmetric rotors. The method described is based on Floquet's
theory and involves the computation of a transfer matrix over one period of motion. The
detailed presentation of the equations of motion, both in a rotating frame of reference and in
a "xed one, is accompanied by an analysis of speci"c cases. The equations of motion for
a simpler model are obtained by modal expansion. Numerical examples are given in order to
show the "nite element formulation and the transfer matrix method as applied to
asymmetric rotors. Due to the use of linear equations, the results shown in this paper have
limited practical utility, but they are useful tools in analyzing the behavior of periodic
systems with weak non-linearities. ( 2001 Academic Press
1. INTRODUCTION

It is important to distinguish between the asymmetry of the rotating part and the
asymmetry of the "xed part of a rotor. If only one of the two is asymmetric, it is possible to
establish a frame of reference in which the coe$cients of the equations of motion are
constant. If both parts are asymmetric, the system equations will, in the majority of cases,
have periodic coe$cients.

The principal methods used to investigate the stability of systems with periodic
coe$cients fall into three groups: perturbation methods [1], variants of Hill's in"nite
determinant method [2, section 7.6, 3], and methods combining the use of Floquet's theory
[2, section 7.2] with numerical computation of the transfer matrix at the end of one period
[4}6].

The main advantage of the methods from the third group, here called &&transfer matrix
methods'', is their high degree of generality. It is not necessary for the equations of motion
to satisfy restrictive conditions (as is the case with the perturbation methods, where the
periodic coe$cients need to be expressed in terms of a small parameter), nor are complex
preparatory steps required before numerical procedures can be applied (as is the case with
both the perturbation and the in"nite determinant methods). The main disadvantage of
0022-460X/01/320303#26 $35.00/0 ( 2001 Academic Press
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these methods is the high computational e!ort required to obtain the transfer matrix over
one period, while the stability of the motion can be evaluated for only one point in the
parameter's space at a given time.

Many studies deal with rotors having partial asymmetry: either bearing asymmetry or
disk and shaft asymmetry. Typical studies are by El-Marhomy [7], for bearing asymmetry,
and Arday"o and Frohrib [8], for shaft and disk asymmetry. In this case, it is possible to
describe the movement of the rotor using a system of di!erential equations with constant
coe$cients.

Amongst the papers dealing with rotors having full asymmetry, the majority consider
simple models, such as a massless shaft of uniform cross-section, a disk usually in plane
motion, one or two identical elastic bearings, and environmental damping acting on the
disk. Typical studies using Hill's in"nite determinant method to analyze the motion stability
are those by Brosens and Crandall [9], and Kotera and Yano [10]. Perturbation methods
are used, for example, by Black and McTernan [11], and also Iwatsubo et al. [12]. The
transfer matrix method is considered by Guilhen et al. [13], for a speci"c model with rigid
bearings at the shaft ends, one elastic bearing and one rigid disk, attached to the shaft at
di!erent stations.

The adoption of simple models of asymmetric rotors facilitates the understanding of the
behavior of such dynamic systems, but the practical use of these studies remains limited.
Nelson and McVaugh [14] developed a "nite element model for a rotor-bearing system
with asymmetric bearings and symmetric shaft, which means a rotor with partial
asymmetry. Their procedure is presented also in reference [15, chapter 3]. Inagaki et al. [16]
studied a multi-disk fully asymmetric rotor with longitudinal variation of the shaft cross-
section. The temporal equations of motion were obtained using the transfer matrix method
(&&transfer'' between two stations of the shaft). The unbalance response is deduced by the
harmonic balance method. Genta [17] applied the "nite element method to fully
asymmetric rotors, using complex co-ordinates, in order to reduce the size of the problem,
and analyzed the stability of the motion using Hill's in"nite determinant method. Kang
et al. [18] also applied the "nite element method to fully asymmetric rotors, studying the
unbalanced response using the harmonic balance method. Neither of the two studies gives
the elements of the matrices related to the shaft asymmetry.

In this paper, the "nite element procedure for rotors with asymmetric bearings and
symmetric shaft by Nelson and McVaugh [14] is extended to include shaft asymmetry. The
motion stability and the unsteady response are analyzed using the method developed by
Friedmann and associates [4, 5]. The elements of all matrices involved in the equations of
motion are included in Appendix A.

2. TRANSFER MATRIX METHOD

Rotor systems are constrained by bearings, dampers, seals, etc., to very small lateral
motion. Generally, these mechanisms are dynamic systems with weak non-linearities, and
their motion is governed by ordinary di!erential equations with periodic coe$cients,
represented in a "rst order state variable form as follows:

MxR N"[A (t)]MxN#M f (t)N#MN
1
(MxN, t)N#MN

2
(MxN, MxR N, t)N, (1)

with matrix [A(t)] and vectors M f N, MN
1
N and MN

2
N periodic, of common period ¹.

An e!ective approach [5] to deal with the weak non-linearities combined in vectors MN
1
N

and MN
2
N of system (1) is quasilinearization, consisting in an iterative evaluation of the
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periodic response of system (1), as a solution of linear periodic systems. This procedure is
initiated with an initial estimation of the solution, obtained from system (1) after dropping
the non-linear terms MN

1
N and MN

2
N.

In this paper, the discussion will center on n-degree-of-freedom dynamic systems
governed by the linear system of m"2n "rst order di!erential equations and m unknown
functions,

[xR N"[A(t)]MxN#M f (t)N, (2)

where Mx(t)N is the state variable vector, [A (t)] is the system matrix, and vector
M f (t)N describes time-dependent forces, both [A(t)] and M f (t)N being periodic, of common
period ¹.

It is of major interest to "nd the steady state response of system (2), i.e., the periodic
solution, and to evaluate its stability.

2.1. STABILITY

The study of the stability of the steady state solution of system (2) can be reduced (see
reference [2, Chapter 7]) to the study of the stability of the trivial solution of the associated
homogeneous system:

MxR N"[A(t)]MxN. (3)

It should be noted that this result is more general, being valid for system (2) replaced with
a non-autonomous system

MxR N"MX (MxN, t)N (2b)

with the functions X
i

being periodic, of period ¹ and system (3) replaced with the
variational system attached to system (2b) and to its periodic solution Mp (t)N,

MyR N"[a (t)]MyN, (3b)

where My (t)N contains the small perturbations from Mp(t)N, and matrix [a(t)] is periodic, of
period ¹.

For system (3), the time transfer matrix is de"ned as an m]m matrix [U (t)] with its
columns consisting of a set of linearly independent solutions.

Since matrix [A(t)] is periodic, of period ¹, an extension of Floquet's theory (see reference
[2, Chapter 7]) shows that [U (t)] is fully known when its variation during one period ¹ is
known. Furthermore, it is shown that the stability of the trivial solution of equation (3) is
fully de"ned by the eigenvalues of the transfer matrix over one period [U(¹)], known as the
characteristic multipliers of system (3). The trivial solution is asymptotically stable if the
modulus of all m eigenvalues is less than one, and is unstable if the modulus of at least one of
the eigenvalues is greater than one.

2.2. STEADY-STATE RESPONSE

For non-homogeneous system (2), without considering the periodicity of matrix [A (t)]
and vector M f (t)N, the general solution is given by (see reference [2, Chapter 6])

Mx(t)N"[U (t)]Mx (0)N#P
t

0

[U (t, s)]M f (s)Nds, (4)
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in which [U(t)] is the transfer matrix of the homogeneous system satisfying the initial
conditions [U(0)]"[I

m
], and matrix [U(t, s)] is given by

[U(t, s)]"[U (t)] [U (s)]~1. (5)

It is clear that the "rst term on the right-hand side of expression (4) is the general solution
of the homogeneous system (3), denoted by Mx

h
(t)N. Matrix [U(t, s)] makes the transfer

between the values at moments &&t'' and &&s'' of Mx
h
(t)N:

Mx
h
(t)N"[U(t, s)] Mx

h
(s)N. (6)

If matrix [A(t)] and vector M f (t)N are periodic, of common period ¹, and if the modulus of
every characteristic multiplier of the corresponding homogeneous system (3) is di!erent
from one, system (2) has one and only one periodic solution [3]. This periodic solution is the
steady state response of the periodic non-homogeneous system only if the associated
periodic homogeneous system is stable, that is to say, only if the modulus of every
characteristic multiplier is less than one.

To obtain the initial conditions corresponding to the steady state response, condition
Mx(¹)N"Mx (0)N is substituted into equation (4). An algebraic system for Mx(0)N is derived:

([I
m
]![U(¹)])Mx(0)N"P

T

0

[U (t, s)]M f (s)Nds. (7)

The steady state response can be obtained by taking the initial conditions Mx (0)N given by
equation (7) and numerically integrating system (2) over one period. If Mx(¹)N is not close
enough to Mx(0)N, the integration is continued over another few periods, until the desired
convergence is obtained.

In order to calculate the transfer matrix over one period [U(¹)], Friedmann et al. [4]
considered the division of the period ¹ into a number of equal parts. By denoting the
division points as

0"t
0
(t

1
(2(t

N~1
(t

N
"¹, (8)

a useful relation can be derived from equation (6):

[U (¹, t
i
)]"[U (¹, t

i`1
)] [U(t

i`1
, t

i
)]. (9)

Matrix [U(¹)]"[U(¹, 0)] is generated by an iterative calculation, based on relation (9)
and starting with [U(¹, t

N
)]"[I

m
]. The elementary transfer matrix [U (t

i`1
, t

i
)] is obtained

by numerically integrating the homogeneous system (3) over the corresponding elementary
interval. The iterative calculation not only gives matrix [U (¹)], to be used in the stability
evaluation, but also matrices [U(¹, t

i
)], appearing in the right-hand term of the algebraic

system (7) for the initial condition Mx (0)N, if an integration scheme using division points (8) is
considered.

It has been shown in reference [4] that a very e$cient way to obtain the elementary transfer
matrix is by considering the fourth order Runge}Kutta scheme with Gill coe$cients.

3. CONFIGURATION

The mathematical model (Figure 1) consists of a #exible horizontal shaft, one or more
rigid disks and two or more #exible bearings.



Figure 1. General model of the rotor.

Figure 2. (a) Co-ordinate systems: OX>Z and Oxyz, "xed and rotating frames of reference; Cx@y@z@, system of
principal axes of inertia of shaft cross-section. (b) Mass unbalance and external damping.
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The shaft cross-section is asymmetric, having di!erent principal moments of inertia, and
varies step-by-step along the longitudinal axis (Figure 2(a)). However, the principal
directions of inertia of the cross-section do not vary along the shaft.

The mathematical model for a bearing is a massless spring}damper system (Figure 3). Its
characteristics (sti!ness and damping) in horizontal and vertical directions are di!erent.
The cross-coupled characteristics in the horizontal and vertical directions are also
considered. This linear and anisotropic model with eight coe$cients (four for sti!ness and
four for viscous damping) is the same as in reference [14].

We analyze the unbalance response using concentrated masses placed on disks (point
B in Figure 2(b)) and we consider an environmental viscous damping acting on the disks
(Figure 2(b)).

Two co-ordinate systems can be seen in Figure 2(a). On the "xed system OX>Z, the
>-axis is along the unde#ected horizontal shaft and the Z-axis is oriented vertically upward.
The rotating system Oxyz has the y-axis coincidental with the >-axis of the "xed system,
and x- and z-axis parallel with the principal axes x@ and z@ of the shaft cross-section (if the
angular de#ections are neglected).

The "nite element procedure for rotors with symmetric shaft, developed by Nelson and
McVaugh [14], will be considered. Modi"cations will be made to accommodate the e!ect of
shaft asymmetry. The shaft model includes the e!ect of rotary inertia and the gyroscopic
e!ect. Shear of the cross-section and internal damping will be neglected.



Figure 3. Bearing sti!ness and damping.
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4. KINEMATICS

We consider (Figure 4) two frames with the origin at the center of the shaft cross-section,
CX>Z, having the axes parallel with the axes of the "xed frame OX>Z, and Cx@y@z@, whose
axes are the principal directions of inertia of the cross-section. The link between the two
frames is made through the set of Euler's angles u, h and t. To bring the shaft cross-section
from its unde#ected position to the current one, three rotations are to be applied
successively: one of angle t about the Z-axis, one of angle h about the new axis x, denoted as
x
1
, and one of angle u about the new axis z, denoted as z

2
.

Assuming the angles h and t to be small and the rotational speed uR constant and denoted
as X, the instantaneous angular velocity of the shaft cross-section has, in the x@y@z@ frame, the
components

u
x
"hQ cosu!tQ sinu, u

y
"X#tQ h, u

z
"hQ sinu#tQ cosu. (10)

See reference [15, Chapter 1], for the general expressions.
In the "xed frame OX>Z (Figure 2), the position of the shaft cross-section is de"ned by

the displacements of its elastic center u, w, and by the angles t, h. The angles h and t are
approximately equal to the angular de#ections collinear with the X- and Z-axis,
respectively (Figure 5):

t"!

L
Ly

u, h"
L
Ly

w. (11)

In the rotating frame Oxyz (Figure 2), the position of the shaft cross-section is de"ned by
the displacements uN , wN and the slopes tM , hM . The transformation of displacements and slopes
from the "xed frame to the moving frame are de"ned by

G
u

wH"[¹
2
]G

uN
wN H, G

t
hH"[¹

2
]T G

tM
hM H , (12)

with matrix [¹
2
] given in Appendix A.



Figure 4. Euler's angles.

Figure 5. Displacements of the shaft elastic axis.
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5. EQUATIONS OF MOTION OF ROTOR ELEMENTS

5.1. DISKS

The center of mass of the rigid disk coincides with the elastic center of the shaft
cross-section. The nodal displacements vector of the disk in "xed co-ordinates is given by

Md
0
N"Mu

0
w

0
t
0

h
0
NT,

its components being the displacements of the shaft at disk attachment.

5.1.1. Equations of motion of disk in ,xed frame

The kinetic energy of the disk has the expression

¹"1
2
m(uR 2

0
#wR 2

0
)#1

2
(J

x
u2

x
#J

y
u2

y
#J

z
u2

z
), (13)
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where u
x
, u

y
and u

z
are the angular velocities given by equation (10), while m, J

x
"J

z
and

J
y
are the mass and the moments of inertia of the disk.
By substituting equation (10) into equation (13), and also considering the e!ect of the

unbalance, we obtain

¹
D
"1

2
m(uR 2

0
#wR 2

0
)#1

2
J
x
(hQ 2

0
#tQ 2

0
)#J

y
XtQ

0
h
0

#m
u
dX[uR

0
cos(Xt#b)!wR

0
sin (Xt#b)], (14)

where X is the angular speed of the rotor, m
u
is the unbalance mass (assumed to be small if

compared with m), d and b are the radius and the angle de"ning the location of the
unbalance.

The four terms in equation (14) give, in order, the translating inertia e!ect, the rotary
inertia e!ect, the gyroscopic e!ect, and the unbalance e!ect.

The virtual work of the disk weight and of damping forces acting on the disk can be
written as

d¸
D
"!mgdw

0
!cuR

0
du

0
!cwR

0
dw

0
, (15)

where c is the damping coe$cient, m is the mass of the disk, and g is the gravitational
acceleration.

The application of Lagrange's equations for the disk only gives

[M
D
]MdG

0
N#[C

D
NMdQ

0
N"MQ

D
N#MQ

L
N, (16)

where [M
D
] and [C

D
] are the mass and damping matrices of the disk, MQ

D
N is the load

vector and MQ
L
N is the vector of liaison forces which will disappear at the assembly of the

elementary matrices.
Matrices [M

D
] and [C

D
], and also vector MQ

D
N are given in Appendix A.

5.1.2. Equations of motion of disk in rotating frame

The nodal displacements in "xed co-ordinates are related to those in rotating
co-ordinates by the transformation equation

Md
0
N"[¹

4
] MdM

0
N, (17)

with the matrix [¹
4
] given in Appendix A. The substitution of equation (17) into equation

(16), yields the equations of motion in rotating co-ordinates as

[MM
D
]MdMG

0
N#[CM

D
] MdMQ

0
N#[KM

D
]MdM

0
N"MQM

D
N#MQM

L
N, (18)

where [MM
D
]"[M

D
], [CM

D
]"2X[M

D
][H

4
]#[¹

4
]T[C

D
] [¹

4
], [KM

D
]"!X2[M

D
]

#X[¹
4
]T [C

D
][¹

4
][H

4
] and MQM

D
N"[¹

4
]TMQ

D
N, with matrices [¹

4
] and [H

4
] given in

Appendix A. MQM
L
N contains liaison forces that will disappear at the assembly of

the elementary matrices. Matrices [KM
D
] and [CM

D
], and also vector MQM

D
N are given in

Appendix A.

5.2. THE SHAFT

While the shaft element has two nodes, the nodal displacement vector includes four
displacements and four slopes. Its expression in "xed co-ordinates is Md

e
N"
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Mu
1

w
1

t
1

h
1

u
2

w
2

t
2

h
2
NT. The nodal displacements in "xed co-ordinates are related to

those in rotating co-ordinates by the transformation equation:

Md
e
N"[¹g]MdM

e
N. (19)

with matrix [¹g] given in Appendix A.
In "xed co-ordinates, the displacements and the slopes along the shaft elements are

represented by shape functions as

G
u

wH"[N (y)]Md
e
N (20)

and

G
t
hH"G

!

L
Ly

u

L
Ly

w H"C
!1 0

0 1D [D(y)]Md
e
N, (21)

where [N] is the matrix of shape functions

[N]"C
N

1
0 !N

2
0 N

3
0 !N

4
0

0 N
1

0 N
2

0 N
3

0 N
4
D and [D]"C

L
Ly

ND.
N

i
(y) are the typical displacement functions of a beam in bending:

N
1
(y)"1!3yN 2#2yN 3, N

2
(y)"¸yN (1!2yN #yN 2), N

3
(y)"3yN 2!2yN 3,

N
4
(y)"¸ (!yN 2#yN 3), with yN "y/¸. (22)

5.2.1. Kinetic energy

The kinetic energy for the shaft element has a form similar to the one derived for the disk
and is

¹
A
"

1

2
oAP

L

0

(uR 2#wR 2) dy#1
2
oP

L

0

(I
x
u2

x
#I

p
u2

y
#I

z
u2

z
) dy, (23)

where u
x
, u

y
and u

z
are the angular velocities given by equation (10), I

x
and I

z
are the

second moments of area about principal axes x@ and z@ of the shaft, I
p
"I

x
#I

z
is the polar

moment of area, A, ¸ and o are the cross-section, the length, and the density of the shaft
element.

By introducing equation (10) in equation (23), we obtain

¹
A
"¹

t
#¹

r
#¹

d,c
cos(2Xt)#¹

d,s
sin (2Xt)#¹g , (24)

where ¹
t
"1

2
oA :L

0
(uR 2#wR 2) dy, is the translating term, ¹

r
"1

2
oI

m
:L
0
(hQ 2#tQ 2) dy is the

rotatory term), ¹
d,c
"1

2
oI

d
:L
0
(tQ 2#hQ 2) dy is the deviatory-cosine term, ¹

d,s
"oI

d
:L
0
tQ hdy is
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the deviatory-sine term and ¹g"oI
p
X :L

0
tQ hdy is the gyroscopic term, with

I
m
"1

2
(I

z
#I

x
), I

d
"1

2
(I

z
!I

x
) and I

p
"2I

m
.

5.2.2. Strain energy

If the shear deformations are neglected, the strain energy of the shaft element is

;"

1

2 P
L

0

[EI
z
(uN A)2#EI

x
(wN A)2] dy, (25)

where u6 and wN are the displacements of the center of the cross-section in rotating co-
ordinates, I

x
and I

z
are the second moments of area about principal axes, E is Young's

modulus, ¸ is the length of the shaft element, ( ) )A"(L2/Ly2) ( ) ), and u6 A and wN A are the
de#ections of bending in the directions of the principal axes.

Substituting the transformation equation (12) into equation (25), the strain energy can be
expressed as

;"

1

2 P
L

0

EI
m
[(uA)2#(wA)2] dy#

1

2P
L

0

EI
d
S[(uA)2!(wA)2] cos(2Xt)!2uAwA sin(2Xt)Tdy,

(26)

where u and w are the displacements of the center of the cross-section in "xed co-ordinates,
I
m

and I
d
are the mean and the deviatory area moments, and X is the angular speed of the

rotor.

5.2.3. <irtual work of the shaft weight

The virtual work of the shaft weight has the expression

d¸
A
"!g P

L

0

(oAdw) dy

"!ogAAdw
1 P

L

0

N
1
dy#dh

1 P
L

0

N
2
dy#dw

2 P
L

0

N
3
dy#dh

2 P
L

0

N
4
dyB, (27)

where N
k
(y) are the shape functions given by equation (22), A, ¸ and o are the cross-section,

the length and the density of the shaft element, and g is the gravitational acceleration.

5.2.4. Equations of motion of shaft in ,xed frame

Upon substituting equations (20) and (21) into the expressions (24), (26) and (27),
Lagrange's equations provide the system

[M
A
(t)] MdG

e
N#[C

A
] MdQ

e
N#[K

A
(t)]Md

e
N"MQ

A
N#MQ

L
N, (28)

with [M
A
(t)] and [K

A
(t)] being periodic matrices of period n/X, and [C

A
] being a constant

matrix, given by

[M
A
(t)]"[M

t
]#[M

r
]#[M

d,c
] cos(2Xt)#[M

d,s
] sin(2Xt), (29)

[C
A
]"X[G], [K

A
(t)]"[K

m
]#xK

d,c
y cos(2Xt)#xK

d,s
y sin(2Xt). (30, 31)
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In equation (28), vector MQ
A
N represents the shaft weight, while vector MQ

L
N contains the

liaison forces that will disappear when the elementary matrices are assembled.
The gyroscopic matrix, mass matrices and sti!ness matrices of equations (29)}(31) may be

expressed as

[G]"1
2
oI

p P
L

0

[D]TC
0 !1

1 0 D[D]dy,

[M
t
]"oA P

L

0

[N]T[N] dy, [M
r
]"oI

mP
L

0

[D]T[D] dy,

[M
d,c

]"oI
d P

L

0

[D]TC
1 0

0 !1D[D] dy, [M
d,s

]"!oI
d P

L

0

[D]TC
0 1

1 0D [D] dy, (32)

[K
m
]"EI

m P
L

0

[B]T[B] dy, [K
d,c

]"EI
d P

L

0

[B]TC
1 0

0 !1D[B] dy,

[K
d,s

]"EI
d P

L

0

[B]TC
0 1

1 0D[B] dy,

with [N], the matrix of shape functions, [D]"[(L/Ly)N] and [B]"(L2/Ly2) [N].
The elements of the matrices de"ned by the above equations, and also of vector MQ

A
N are

shown in Appendix A.
Matrices [M

d,c
], [M

d,s
], [K

d,c
] and [K

d,s
] are proportional to the deviatory moment of

area of the shaft I
d
, and will vanish for a symmetric shaft. Matrices [M

t
], [M

r
], [K

m
] and

[G], speci"c for a symmetric shaft, can be found also in reference [14].

5.2.5. Equations of motion of shaft in rotating frame

Substituting transformation equation (19) into equation (28), we obtain

[MM
A
] MdM G

e
N#[CM

A
]MdMQ

e
N#[KM

A
] MdM

e
N"MQM

A
(t)N#MQM

L
N, (33)

where [MM
A
], [CM

A
] and [KM

A
] are constant matrices given by

[MM
A
]"[M

t
]#[M

r
]#[M

d
], [ CM

A
]"2X[MM

A
] [H

8
]#X[G], (34, 35)

[KM
A
]"[K

m
]#[K

d
]!X2[MM

A
]#X2[G][H

8
], (36)

with matrix [H
8
] given in Appendix A.

In equation (33), the weight vector MQM
A
(t)N is periodic, of period 2n/X. Its elements are

shown in Appendix A. Vector MQM
L
N contains the liaison forces.

In equations (34)}(36), matrices [M
t
], [M

r
], [K

m
] and [G] are as de"ned by equation (32),

while matrices [M
d
] and [K

d
] are given by [M

d
]"[M

d,c
] and [K

d
]"[K

d,c
], with [M

d,c
]

and [K
d,c

] as de"ned by equation (32).
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5.3. BEARINGS

The nodal displacement vector of the bearing in "xed co-ordinates is given by

Md
p
N"Mu

p
w
p
NT,

its components being the displacements of the shaft center at bearing attachment.

5.3.1. Equations of motion of bearing in ,xed frame

The virtual work of the forces acting on the shaft can be written as

d¸
p
"!k

uu
u
p
du

p
!k

uw
w
p
du

p
!k

wu
u
p
dw

p
!k

ww
w

p
dw

p

!c
uu

uR
p
du

p
!c

uw
wR
p
du

p
!c

wu
uR
p
dw

p
!c

ww
wR

p
dw

p
, (37)

where k
uu
, k

uw
, k

wu
and k

ww
are the sti!ness coe$cients, and c

uu
, c

uw
, c

wu
and c

ww
are the

damping coe$cients.
The application of Lagrange's equations gives

[C
P
]MdQ

p
N#[K

P
]Md

p
N"MQ

L
N, (38)

where [K
P
] and [C

P
] are the sti!ness and damping matrices of the bearing, and MQ

L
N is

a vector containing the liaison forces between bearing and shaft. Matrices [K
P
] and [C

P
]

are given in Appendix A.

5.3.2. Equations of motion of bearing in rotating frame

The nodal displacements in "xed co-ordinates are related to those in rotating co-
ordinates by the transformation equation

Md
p
N"[¹

2
]MdM

p
N (39)

with the matrix [¹
2
] given in Appendix A.

Substituting equation (39) into equation (38), we obtain

[CM
P
(t)]MdMQ

p
N#[KM

P
(t)]MdM

p
N"MQM

L
N, (40)

where [CM
P
(t)] and [KM

P
(t)] are periodic matrices, of period n/X, given by

[CM
P
]"[¹

2
]T[C

P
][¹

2
], [KM

P
]"[¹

2
]T[K

P
][¹

2
]#X[CM

P
][H

2
], (41, 42)

with matrices [¹
2
] and [H

2
] given in Appendix A. The vector MQM

L
N contains the liaison

forces between bearing and shaft. Matrices [CM
P
(t)] and [KM

P
(t)] are given in Appendix A.

There are particular cases when these two matrices are constant, the most general case being
de"ned by the conditions

k
uu
"k

ww
, k

wu
"!k

uw
, c

uu
"c

ww
"0 and c

wu
"!c

uw
.
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6. GLOBAL EQUATIONS OF MOTION

6.1. GENERAL CASE

By assembling the elementary matrices of shaft elements, disks and bearings, we obtain
a system of 4N

n
second order di!erential equations and 4N

n
unknown functions, where

N
n
is the number of nodes of the shaft partition. The global equations of motion in "xed

co-ordinates are

[M(t)]MdG N#[C]MdQ N#[K (t)]MdN"MQ
u
(t)N#MQ

w
N , (43)

where [M(t)] and [K (t)] are periodic matrices of period ¹
1
"n/X, for which the time

dependency is due to the shaft asymmetry, matrix [C] is constant, MQ
u
(t)N, the unbalance

vector, is periodic, of period ¹
2
"2n/X, and MQ

w
N, the weight vector, is constant.

In equation (43), MdN is the vector of global DOF in "xed reference frame, given as

MdN"Mu
1

w
1

t
1

u
1

2 u
Nn

w
Nn

t
Nn

u
Nn

NT.

In rotating co-ordinates, the assembled global equations are

[MM ]MdMG N#[CM (t)]MdMQ N#[KM (t)]MdM N"MQM
u
N#MQM

w
(t)N, (44)

where [MM ] is a constant matrix, [CM (t)] and [KM (t)] are periodic matrices of period ¹
1
"n/X,

for which the time dependency is due to bearing asymmetry, MQM
u
N, the unbalance vector, is

constant, and MQM
w
(t)N, the weight vector, is periodic of period ¹

2
"2n/X.

Each of the above systems can be transformed into a "rst order di!erential system, with
8N

n
equations and 8N

n
unknown functions. From a numerical point of view, it is more

convenient to consider the equations of motion in rotating co-ordinates, because mass
matrix [MM ] is constant. Substituting also u"Xt for the variable t, system (44) can be
expressed as

d

duG
MdN

Md@NH"[A(u)]G
MdN

Md@NH#M f (u)N , (45)

with

[A(u)]"

[0] [1]

!

1

X2
[MM ]~1[KM (u)] !

1

X
[MM ]~1[CM (u)]

, M f(u)N"

i
g
j
g
k

M0N

1

X2
[MM ]~1MQM (u)N

e
g
f
g
h

.

Matrix [A (u)] has a periodic variation with frequency of p, due to bearing asymmetry,
while vector M f (u)N has a periodic variation with frequency of 2p, due to rotor weight.

To study only the stability of the motion, the transfer matrix [U(¹)], with ¹"n, is
calculated using the method described in section 2, and its 8N

n
eigenvalues are evaluated.

In order to study the stability and to obtain the steady state response at the same time,
the period to be considered is ¹"2n. Calculated values of matrix [U(¹, u)] at the division
points of the period ¹ are used to build the algebraic system of type (7) for the initial
conditions Mx(0)N. If the periodic non-homogeneous system (45) is integrated using
Simpson's rule, the number of intervals per period N must be even.
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6.2. MASSLESS SHAFT, ASSOCIATED WITH UNDAMPED BEARINGS

If the shaft mass is ignored, matrix [M] in equation (43) becomes constant. Reordering
the equations of system (43) and also the elements of the global DOF vector MdN, we can
highlight the contribution of the N

d
disks, as follows:

C
[M

dd
] [0

dr
]

[0
rd
] [0

rr
]D G

MdG
d
N

MdG
r
NH#C

[C
dd
] [0

dr
]

[0
rd
] [C

rr
]D G

MdQ
d
N

MdQ
r
NH#C

[K
dd
] [K

dr
]

[K
rd
N MK

rr
]D G

Md
d
N

Md
r
NH"G

MQ
d
N

M0
r
N H ,
(46)

where index &&d'' refers to disks, and index &&r'' refers to the rest of the rotor. Vector Md
d
N

contains the 4N
d

displacements associated with the N
d

disks.
If the damping of the bearings is also ignored, we have [C

rr
]"[0

rr
] and the last

4(N
n
!N

d
) equations of system (46) give

Md
r
N"![K

rr
]~1[K

rd
]Md

d
N. (47)

Consequently, the "rst 4N
d
equations (46) become

[M
dd
]MdG

d
N#[C

dd
]MdQ

d
N#[K*

dd
(t)]Md

d
N"MQ

d
N, (48)

with

[K*
dd

(t)]"[K
dd
]![K

dr
(t)] [K

rr
(t)]~1[K

rd
(t)]. (49)

In equations (48) and (49), the variable matrices are periodic, of period ¹
1
"n/X, and the

time dependency is due to the shaft asymmetry.
System (48) can be transformed into a "rst order di!erential system of type (45), with 8N

d
equations and 8N

d
unknown functions. The advantage of this formulation is the capability

to re"ne the "nite element partition of the shaft, without increasing the size of the motion
equations system.

6.3. SYMMETRIC SHAFT

If the shaft cross-section is symmetric, matrices [M] and [K] from equations (43) are
constant, and the motion is governed by a linear system with constant coe$cients, de"ned
as

[M]MdG N#[C]MdQ N#[K]MdN"MQ
u
(t)N#MQ

w
N. (50)

To evaluate the motion stability, we have only to analyze the eigenvalues of a constant
matrix. The evaluation of the steady state response, with its components, the weight
response and the unbalance response, is given below. The weight response is the solution of
the algebraic system de"ned as

[K]Md
w
N"MQ

w
N . (51)

To obtain the unbalance response, we express the unbalance vector from equation (50) as
MQ

u
(t)N"Re(M<Ne*(Xt#b) ), where M<N is a constant vector with complex elements. It is easy
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to show that the unbalance response will be obtained as

Md
u
(t)N"Re(Mz

0
N e*Xt ), (52)

where Mz
0
N is a constant vector with complex elements, de"ned as the solution of the

algebraic system

([K]!X2[M]#iX[C])Mz
0
N"M<Ne*b . (53)

7. EQUATIONS OF MOTION, BY MODAL EXPANSION

In order to test the "nite element formulation, the equations of motion for a simpler
model will be obtained using the Rayleigh}Ritz method.

The new model consists of a #exible horizontal shaft, a rigid disk and two #exible
bearings (Figure 6). The shaft is of uniform cross-section along its longitudinal axis and has
two di!erent sti!nesses along its two principal directions (Figure 2(a)). Its mass is supposed
to be small compared with that of the disk, and consequently negligible. For bearings, only
the direct sti!nesses, denoted as k

u
and k

w
, are considered. The unbalance is de"ned as

shown in Figure 2(b). The only damping considered is the external one, acting on the disk
(Figure 2(b)).

The shaft displacements in the x and z directions can be expressed as

u(y, t)"A1!
y

¸B u
1
(t)#

y

¸

u
2
(t)#f (y)q

x
(t), w (y, t)"A1!

y

¸Bw
1
(t)

#

y

¸

w
2
(t)#f (y)q

z
(t) , (54)

where ¸ is the shaft length, u
1
, w

1
, u

2
and w

2
, are the displacements of the shaft ends, q

x
and

q
w

are generalized independent co-ordinates, and f (y) is the displacement function.
Figure 6. Simpli"ed model of the rotor: (a) location of the disk, (b) bearing sti!ness.
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By substituting equations (54) into equation (11), we obtain the slopes of the shaft axis:

h (y, t)"
w
2
!w

1
¸

#

Lf

Ly
q
z

and t (y, t)"!

u
2
!u

1
¸

!

Lf

Ly
q
x
. (55)

For y"y
0
, the four equations (54) and (55) provide the displacements of the shaft ends

(u
1
, w

1
, u

2
, w

2
) as functions of the displacements of the center of the disk (u

0
, w

0
, t

0
, h

0
) and

of the generalized co-ordinates (q
x
, q

z
):

u
1
"u

0
#y

0
t
0
!( f

0
!y

0
g
0
)q

x
,

u
2
"u

0
!(¸!y

0
)t

0
![ f

0
#(¸!y

0
)g

0
]q

x
,

w
1
"w

0
!y

0
h
0
!( f

0
!y

0
g
0
)q

z
,

w
2
"w

0
#(¸!y

0
)h

0
![ f

0
#(¸!y

0
)g

0
]q

z
, (56)

where f
0
"f (y

0
) and g

0
"(df/dy) (y

0
).

The kinetic energy of the disk and the strain energy of the shaft are given by the
expressions (14) and (26) respectively.

By introducing equations (54) in equation (26), the strain energy may be expressed as

;"1
2
k
m
(q2

x
#q2

z
)#1

2
k
d
[(q2

x
!q2

z
) cos(2Xt)!2q

x
q
z
sin(2Xt)], (57)

where k
m

and k
d

are the mean and the deviatoric sti!nesses of the shaft, given by

k
m
"EI

mP
L

0

f A (y)2dy and k
d
"EI

d P
L

0

f A (y)2dy.

Assuming the displacement function to be the "rst mode shape in the bending of a beam
with constant cross-section, simply supported at both ends, i.e., f (y)"sin(ny/¸), the
sti!nesses become

k
m
"

n4

2

EI
m

¸3
and k

d
"

n4

2

EI
d

¸3
.

The expression for the virtual work is

d¸"!k
u1

u
1
du

1
!k

w1
w
1
dw

1
!k

u2
u
2
du

2
!k

w2
w
2
dw

2
!cuR

0
du

0
!cwR

0
dw

0
!mgdw

0
,

(58)

where u
1
, w

1
, u

2
and w

2
, are the displacements of the shaft ends, u

0
and w

0
are the

displacements of the center of the disk, k
u1

, k
w1

, k
u2

and k
w2

are the sti!ness coe$cients of
the bearings, c is the damping coe$cient, m is the mass of the disk, and g is the gravitational
acceleration. Substituting equations (56) into equation (58), the virtual work becomes
a function of the disk displacements u

0
, w

0
, t

0
, h

0
and generalized co-ordinates q

x
, q

z
.

Considering the expressions for the kinetic energy, strain energy and virtual work, the
application of Lagrange's equations gives

C
[M] [0

42
]

[0
24

] [0
22

]D G
MdG

0
N

MdG
q
NH#C

[C] [0
42

]

[0
24

] [0
22

]D G
MdQ

0
N

MdQ
q
NH#C

[K
0
] [K

0q
]

[K
q0

] [K
q
]D G

Md
0
N

Md
q
NH"G

MQN

M0
2
NH ,
(59)
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where matrices [M], [C] and vector MQN are identical to [M
D
], [C

D
] and MQ

D
N, respectively,

from equation (16):

Md
0
N"Mu

0
w

0
t
0

h
0
NT, Md

q
N"Mq

x
q
z
NT,

[K
0
]"

k
u1
#k

u2
0 k

u1
y
0
!k

u2
(¸!y

0
) 0

k
w1

#k
w2

0 !k
w1

y
0
#k

w2
(¸!y

0
)

k
u1

y2
0
#k

u2
(¸!y

0
)2 0

(sym) k
w1

y2
0
#k

w2
(¸!y

0
)2

,

[K
q
(t)]"

k
u1

( f
0
!y

0
g
0
)2

#k
u2

[ f
0
#(¸!y

0
)g

0
]2

0

0

k
w1

( f
0
!y

0
g
0
)2

#k
w2

[ f
0
#(¸!y

0
)g

0
]2

#k
mC

1 0

0 1D#k
d C

cos 2Xt !sin 2Xt

!sin 2Xt !cos 2XtD ,

[K
0q

]"[K
q0

]T"

!k
u1

( f
0
!y

0
g
0
)

!k
u2

[ f
0
#(¸!y

0
)g

0
]

0

!k
u1

y
0
( f

0
!y

0
g
0
)

#k
u2

(¸!y
0
) [ f

0
#(¸!y

0
)g

0
]

0

0

!k
w1

( f
0
!y

0
g
0
)

!k
w2

[ f
0
#(¸!y

0
)g

0
]

0

k
w1

y
0
( f

0
!y

0
g
0
)

!k
w2

(¸!y
0
) [ f

0
#(¸!y

0
)g

0
]

The last two equations of system (59) give

Md
q
N"![K

q
(t)]~1[K

q0
]Md

0
N ,

and therefore, the "rst four equations provide the system, and

[M]MdG
0
N#[C]MdQ

0
N#[K(t)]Md

0
N"MQ (t)N , (60)

where

[K (t)]"[K
0
]![K

0q
][K

q
(t)]~1 [K

q0
].

System (60) gives a "rst order di!erential system of type (45), with eight equations and
eight unknown functions.
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8. NUMERICAL RESULTS

Two models are used for testing the "nite element method and the transfer matrix method
as applied to asymmetrical rotors. Model 1 is as shown in Figure 6, but the mass of the shaft
is not neglected, and the bearings are as shown in Figure 3. The "xed characteristics of
model 1 are given in Table 1. The variable parameter is the factor of shaft asymmetry,
de"ned as the rate between the deviatory and the mean area moments of the shaft
cross-section, I

d
/I

m
. Model 2 is similar to model 1, only the bearing damping is replaced by

an external damping of coe$cient c"50 N s/m, and the sti!ness cross-coe$cients of the
bearings are neglected.

Using the "nite element formulation, the shaft is simulated by two elements, delimited by
disk station and shaft ends. It was proven that when using four elements (dividing each of
the previous elements by two), the e!ect on calculated critical speeds and steady state
response is insigni"cant.

The number of intervals per period was set at N"90 for stability analysis and N"360
for steady state response evaluation. These values were established as the minimum
acceptable by testing the convergence of numerical calculations. The response amplitude is
observed at the disk-to-shaft attachment.

If the shaft is symmetric, the motion of the rotor can be observed in both the "xed and the
rotating frames of reference. In the "rst case, the steady state response is obtained as the
solution of a system of di!erential equations with constant coe$cients (see section 6.3),
while in the second case we are dealing with the numerical integration of a periodic system
(see section 6.1). Figure 7 gives the results obtained by the two methods, for model 1. The
rotational speed was varied from 75 to 300 rad/s, in increments of 5 rad/s. As can be
observed, there are two peaks, corresponding to principal critical speeds excited by the mass
unbalance. The relative error has an average value of 1)3% and a maximum value of 3)4%
(at 75 rad/s). The accuracy of the algorithm used to "nd the steady state solution of
a periodic system is veri"ed by this example.

The e!ect of shaft asymmetry on the steady state response is studied next, using model 1,
and the results are plotted in Figure 8(a), for a rotational speed increment of 5 rad/s, and in
Figure 8(b), for a rotational speed increment of 1 rad/s. As can be observed from Figure 8(a),
when the factor of shaft asymmetry passes from 0 to 0)2, each one of the two peaks from
Figure 7 splits into two other peaks. Additionally, there are two new peaks, corresponding
to secondary critical speeds excited by the rotor weight (at 105 and 115 rad/s). To
understand this behavior, we need to analyze the stability of the motion.
TABLE 1

Details of model 1

Element Details

Disk m"2 kg, J
x
"J

z
"0)005 kgm2, J

y
"0)01 kgm2

m
u
d"0)004 kgm, b"453

Shaft y
0
"0)4 m, ¸"1 m, E"2]1011 Nm2, o"7750 kg/m3

I
m
"4]10~8 m4, A"0)693]10~3m2

Bearing*y"0
[K

p
]"C

3)5

!1

!1

5)5 D]105 N/m, [C
P
]"C

26

!8

!8

20DNs/m

Bearing*y"¸

[K
p
]"C

4)5

!1

!1

3D]105 N/m, [C
P
]"C

24

!4

!4

30DNs/m



Figure 7. Steady state response for model 1, with symmetric cross-section of shaft. Comparison between the
responses obtained using the autonomous system of motion in "xed frame of reference and the periodic system of
motion in rotating frame of reference: **, "xed frame; m, rotating frame.

Figure 8. Steady state response for model 1. (a) E!ect of shaft asymmetry:**, symmetrical; } } } } }, factor of
shaft asymmetry 0)2. (b) Detail of the region of main critical speeds.
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Figure 9 gives the regions of instability obtained for model 1, for factors of shaft
asymmetry varying from 0 to 0)3, with increments of 0)05. The results were obtained by
varying the rotational speed between 75 and 300 rad/s, in increments of 1 rad/s. For the
symmetric shaft, no instability interval has been identi"ed. For the asymmetric shaft, there
are three regions of instability, of widths increasing with the shaft asymmetry until joining
into a single band. For a factor of shaft asymmetry of 0)2, the 6 critical speeds delimiting the
three regions of instability are 200, 210, 213, 223, 226 and 239 rad/s. Consequently, the split
of the two peaks observed in Figures 8(a) and (b) indicates two regions of instability. The
evaluation of the steady state response could not identify the middle region of instability.
One may note that the periodic solution is meaningless inside the instability regions.

The response amplitudes of models 1 and 2 are compared next, for a factor of shaft
asymmetry of 0.2. For model 2, Figure 10 shows two peaks corresponding to principal
critical speeds excited by the mass unbalance and one peak for a secondary critical speed
excited by the rotor weight. A stability analysis shows a single instability region, bounded
by the speeds of the two principal peaks. The di!erent behavior for model 1 is due basically
to the bearing cross-sti!ness. Replacing the bearing damping with the external damping



Figure 9. Instability regions for model 1; e!ect of shaft asymmetry.

Figure 10. Steady state response, for a factor of shaft asymmetry of 0)2. Comparison between models 1 and 2:
))))))), model 1; **, model 2; } } } } }, model 2, massless shaft.
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c"50 N s/m has a smaller e!ect, while the direct damping of the two bearings equals the
external damping (c"c

u1
#c

u2
"c

w1
#c

w2
).

Figure 10 shows also that if we ignore the mass of the shaft, the instability region of model
2 passes from 210}235 rad/s to 345}385 rad/s. This e!ect is very big because the mass of the
shaft is 2)7 times larger than the mass of the disk (see Table 1).

The response amplitudes obtained by "nite element formulation are compared next with
those obtained by the Rayleigh}Ritz method. Two factors of shaft asymmetry are used for
model 2. As can be observed from Figure 11, the results obtained by the two methods are
very close, which validates the "nite element formulation developed for asymmetric rotor-
bearing systems.

9. CONCLUSIONS

In this paper, a "nite element procedure for rotor-bearing systems is generalized to
include the e!ects of the shaft asymmetry. In order to deal with the particular form of the



Figure 11. Steady state response for model 2. Comparison between the responses obtained using the "nite
element method (FEM) and the Rayleigh}Ritz method (RRM), for two factors of shaft asymmetry (fsa): **,
FEM, fsa 0)2; )))))), RRM, fsa 0)2; } } } } }, RRM, fsa 0)4.

ASYMMETRIC ROTOR RESPONSE 323
equations of motion (ordinary di!erential equations with periodic coe$cients), the "nite
element method is applied in conjunction with a time-transfer matrix method, based on
Floquet's theory. The time-transfer matrix method was tested by observing the motion of
a rotor with symmetric shaft in both "xed and rotating frames of reference. The "nite
element procedure was compared, for a rotor-bearing system with a massless shaft and
undamped bearings, with a modal expansion method.

Numerical examples have shown that the "nite element method in conjunction with the
time-transfer matrix method is a convenient way to predict the behavior of asymmetric
rotors.
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APPENDIX A: MATRICES
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A.3. SHAFT ELEMENT MATRICES
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A.4. BEARING MATRICES

[K
P
]"C

k
uu

k
wu

k
uw

k
ww
D , [C

P
]"C

C
uu

C
wu

C
uw

C
ww
D , (A.23, 24)

[KM
P
]"A

k
uu
#k

ww
2

!X
c
uw
!c

wu
2 BC

1

0

0

1D#A
k
uw
#k

wu
2

!X
c
uu
!c

ww
2 BC

0

!1

1

0D
#A

k
uu
!k

ww
2

#X
c
uw
!c

wu
2 BC

cos(2Xt)

sin(2Xt)

sin(2Xt)

!cos(2Xt)D
#A

k
uw
#k

wu
2

#X
c
uu
!c

ww
2 BC

!sin(2Xt)

cos(2Xt)

cos(2Xt)

sin(2Xt)D , (A.25)

[CM
P
]"

c
uu
#c

ww
2 C

1

0

0

1D#
c
uw
!c

wu
2 C

0

!1

1

0D#
c
uu
!c

ww
2 C

cos(2Xt)

sin(2Xt)

sin(2Xt)

!cos(2Xt)D
#

c
uw
#c

wu
2 C

!sin(2Xt)

cos(2Xt)

cos(2Xt)

sin(2Xt)D. (A.26)

APPENDIX B: NOMENCLATURE

A cross-section area of the shaft
[A(t)] periodic matrix of dimension m]m
[B(y)] matrix de"ned by [B]"(L2/Ly2) [N]
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c external damping coe$cient
c
uu
, c

uw
, c

wu
, c

ww
damping coe$cients of the bearings, Figure 3

[C] damping matrix (subscripts D, A, P: disk, shaft, bearing)
d radius de"ning the unbalance position, Figure 2
[D(y)] matrix given by [D]"[(L/Ly)N]
E Young's modulus
f (y) displacement function
M f N force vector of dimension m
g gravitational acceleration
[G] gyroscopic matrix
xH

j
y

,j/2,4,8
constant transformation matrices, Appendix A

[I
m
] m]m unity matrix

I second moments of area for shaft (subscripts x, z, m, d, p: along x@- and z@-axis,
mean, deviatoric, polar)

J moment of inertia of the disk (subscripts x, y: transverse, polar)
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sti!ness coe$cients of the bearings, Figure 3
k
m
, k

d
mean and deviatory sti!ness of the shaft

[K] sti!ness matrix (subscripts D, A, P: disk, shaft, bearing)
¸ length of a shaft element, also shaft length
d¸ virtual work of external forces (subscripts D, A, P: disk, shaft, bearing)
m mass of the disk
m

u
mass of the unbalance

[M] damping matrix (subscripts D, A, P: disk, shaft, bearing)
N number of intervals in a period
N

d
, N

n
number of disks, number of nodes of the shaft partition

[N(y)] matrix of shape functions for shaft elements
q generalized displacements (subscripts x, z: along X- and Z-axis)
MQN forces vector (subscripts D, A, P, ¸, u, w: disk, shaft, bearing, liaison, unbalance,

weight)
t time
¹ period
¹ kinetic energy (subscripts D, A: disk, shaft)
x¹

j
y
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periodic transformation matrices, Appendix A

u, w lateral de#ections of the shaft in the in "xed frame
; strain energy
MxN vector of dimension m, containing displacements and velocities
(xyz) rotating frame
(x@y@z@) principal axes of the shaft cross-section
(X>Z) "xed reference frame
y axial distance along shaft element or shaft
b angle de"ning the unbalance position, Figure 2
MdN nodal displacements vector (subscripts 0, e, p: disk, shaft element, bearing)
h, t angular de#ections of the shaft
o mass per unit volume for shaft
u angle of rotation of the rotor
u, h, t Euler's angles
[U(t)], [U(t, s)] transfer matrix of system (1)
u

x
, u

y
and u

z
angular velocities of the shaft cross-section

X rotational speed of the rotor

Special symbols

xR "dx/dt di!erentiation with respect to time
x@"dx/du di!erentiation with respect to angle of rotation
xN , MxN N, [XM ] with reference to the rotating frame (for scalars, vectors or matrices)
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